MS36-P24 Topological analysis and properties of new imidazole-based systems as potential candidates for biological applications Amani DIREM (Laboratoire des Structures, Propriétés et Interactions Interatomiques LASPI2A, Département des Sciences de la Matière, Faculté des Sciences et de la Technologie, Université ‘’Abbes Laghrour’’, Khenchela 40.000, Algeria, Khenchela, Algeria) Mohammed S. M. Abdelbaky (Departamento de Química Física y Analítica, Universidad de Oviedo – CINN, 33006 Oviedo, Spain, Oviedo, Spain) Koray Sayın (Department of Chemistry, Faculty of Science, Cumhuriyet University 58140 Sivas, Turkey, Sivas, Turkey) Andrea Cornia (Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio Emilia & INSTM, via G. Campi 103, 41125 Modena, Italy, Modena, Italy) Olufunso Abosede (Department of Chemistry, Federal University Otuoke, P.M.B 126, Yenagoa, Bayelsa State, Nigeria, Yenagoa, Nigeria) Santiago García-Granda (Departamento de Química Física y Analítica, Universidad de Oviedo – CINN, 33006 Oviedo, Spain, Oviedo, Spain)email: d_amani_83@yahoo.frTransition metal complexes based on imidazole have shown significant interest in biological systems, especially carboxylate mixed-ligands systems of copper(II), which display a variety of pharmacological effects, including antitumor, superoxide dismutase and catecholase activities [1]. Despite the considerable number of the reported imidazole systems built of different carboxylate ligands and metallic centers, namely ; copper, cobalt, nickel, manganese, cadmium and ruthenium, the crystallographic information about imidazole-based copper(II) complexes containing citrate mixed-ligands is rather rare, except for only two hexacoordinated complexes of cobalt and nickel [2]. In order to contribute to the well-understanding of these systems, the one-pot synthesis, the crystal structure, the properties and the topological nets of two copper(II) potential candidates for biological applications involving imidazole and citrate mixed-ligands were reported [3].References:

[1] (a) Colacio, E., Ghazi, M., Kivekäs, R., Klinga, M., Lloret, F. & Moreno, J. M. (2000). Inorg. Chem. 39(13). 2770–2776. (b) Caudle, M. T., Kampf, J. W., Kirk, M. L., Rasmussen P. G. & Pecoraro, V. L. (1997) J. Am. Chem. Soc. 119(39). 9297–9298. (c) Sorrenson, J. R. J. (1989) Prog. Med. Chem. 26. 437. (and references therein). (d) Abuhijleh, A. L. & Woods, C. (1993) Inorg. Chim. Acta. 209. 187. (e) Tamura, H., Imai, H., Kuwahara J. & Sugiura, Y. (1987). J. Am. Chem. Soc. 109. 6870.

[2] (a) Suresh, E. (2009). J. Chem. Cryst. 39. 104. (b) You, X., Zhu, L. & Sun, J. (2010). Chin. J. Chem. 28. 2174. (c) Koner, R. & Goldberg, I. (2009). Acta Cryst. C65. m37. (d) Nath, J. K., Kirillov, A. M. & Baruah, J. B. (2014). RSC Advances. 4. 47876. (e) Xiao, L.-Q., Qiao, J.-Z. & Hu, T.-P. (2014). Chin. J. Inorg. Chem. 30. 2127. (f) Benkanoun, A., Balegroune, F., Guehria-Laidoudi, A., Dahaoui, S. & Lecomte, C. (2012). Acta Cryst. E68. m480. (g) Wu, Y., Yu, L., Cheng, M., Han, W., Wang,
Keywords: Imidazole-based systems, topological analysis, biological properties